2020(SPRING) Problem Sheet MS 566/MI 566 Fourier Analysis

- 1. Prove that the solution to the Dirichlet's problem is unique.
- 2. Let $f \in L^1(T)$ and $g \in L^{\infty}(T)$. Show that

$$\lim_{n \to \infty} \int f(t)g(nt)dt = \widehat{f}(0)\widehat{g}(0).$$

3. Is the solution to the heat equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, u(0, x) = f(x), u(t, 0) = 0 = u(t, 2\pi), t > 0$$

periodic in x?

- 4. Prove that the Fourier series of a continuously differentiable function f on the circle T is absolutely convergent.
- 5. Give an example of a series that is Cesaro summable but not convergent.
- 6. Find the value of

$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)^6}.$$

7. Consider the 2π - periodic odd function defined on $[0, \pi]$ by $f(\theta) = \theta(\pi - \theta)$. Compute the Fourier coefficient of f and show that

$$f(\theta) = \frac{8}{\pi} \sum_{k \text{ odd} \ge 1} \frac{\sin k\theta}{k^3}.$$

8. Let $f \in L^1(\mathbb{T})$ and assume $\widehat{f}(0) = 0$ and define

$$F(t) = \int_0^t f(u) du.$$

Show that F is continuous , 2π periodic and

$$\widehat{F}(n) = \frac{1}{in}\widehat{f}(n).$$

6

- 9. Let Let $f, g \in L^1(\mathbb{T})$. Prove that $\widehat{f * g}(n) = \widehat{f}(n)\widehat{g}(n)$.
- 10. Assume $f \in L^1(\mathbb{T})$ and $\widehat{f}(n) = O(|n|^{-k})$. Show that f is m times differentiable and $f^{(m)} \in L^2(\mathbb{T})$ if k m > 1/2.
- 11. Let $f \in L^1(\mathbb{T})$. Show that

$$\lim_{|n|\to\infty}\widehat{f}(n)=0$$

12. Define Fejer kernel F_N . Show that all $N \ge 1$,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} F_N(t) dt = 1$$

- 13. Prove that if a series of complex numbers $\sum c_n$ converges to s, then $\sum c_n$ is Cesaro summable to s.
- 14. Define Cesaro and Abel summability of an infinite series. Give an example of a series with justification which is abel summable but not cesaro summable.
- 15. Compute the fourier transform of the characteristic function of an interval.Let $g_n = \chi_{[-n,n]}$ and $h = \chi_{[-1,1]}$. Find $g_n * h$. Show that $g_n * h$ is the Fourier transform of a function $f_n \in L^1$, except for a multiplicative constant,

$$f_n = \frac{\sin x \sin nx}{x^2}.$$

Show that $|| f_n ||_1 \to \infty$ and conclude that the mapping $f \mapsto \hat{f}$ maps L^1 into a proper subset of C_0 .

- 16. If g(x) = -ixf(x) and $g \in L^1$, then show that \widehat{f} is differentiable and $\widehat{f'}(t) = \widehat{g}(t)$.
- 17. Find the Fourier transform of $e^{-\pi x^2}$.
- 18. Let G be a compact proper subgroup of T. Show that G is finite and discrete.
- 19. Let $f \in L^1(T)$ and $g \in L^{\infty}(T)$. Show that

$$\lim_{n \to \infty} \int f(t)g(nt)dt = \widehat{f}(0)\widehat{g}(0)$$

- 20. Let f be an integrable function on T such that $\hat{f}(n) = 0 \ \forall n \in \mathbb{N}$. Show that f = 0 at all points of continuity of f.
- 21. Prove that the Fourier series of a continuously differentiable function f on the circle is absolutely convergent.
- 22. Let $\{k_n\}$ be a sequence of good kernels and f be an integrable function on T, then show that

$$\lim_{n \to \infty} k_n * f(x) = f(x)$$

whenever f is continuous at x.

- 23. Let $f \in L^1(\mathbb{R})$. Show that \widehat{f} is uniformly continuous in $-\infty < \xi < \infty$.
- 24. Show that the space of functions whose Fourier transforms have compact support forms a dense subspace of $L^{p}(\mathbb{R}), 1 \leq p \leq 2$ (Hint: Use Fejer kernel).
- 25. Suppose that $1 \le p < r \le \infty$. Prove that $L^p(T) \supset L^r(T)$.
- 26. Let f and g be two integrable functions on $[-\pi, \pi]$.
 - (a) Define f * g.
 - (b) Show that f * g is an integrable function.

- (c) If either f or g are continuous function, then show that f * g is continuous function.
- (d) If either $f \in L^2(\mathbb{T})$ or $g \in L^2(\mathbb{T})$, then show that $f * g \in L^2(\mathbb{T})$.
- 27. Let f be a continuous function on T. Prove that $\lim_{|n|\to\infty} \widehat{f}(n) = 0$.
- 28. Find the value of $\sum_{n=1}^{\infty} \frac{1}{n^4}$.
- 29. Prove that $\{e^{-int}\}$ forms a complete orthonormal basis for $L^2(T)$.
- 30. Let f be a C^1 function on $[0, \pi]$ with $f(0) = 0 = f(\pi)$. Prove that

$$\int_0^{\pi} |f|^2 dt \le \int_0^{\pi} |f'|^2 dt.$$

- 31. Let $f \in L^1(\mathbb{R})$. Find the range of $\mathcal{F}f$, where $\mathcal{F}f = \widehat{f}$.
- 32. Find \hat{f} if $f = \chi_{[-1,1]}$.
- 33. Define Schwartz space. Show that it is closed with respect to the Fourier transformation.
- 34. Show that there exists unique isometry

$$P: L^2(\mathbb{R}) \to L^2(\mathbb{R})$$

which is onto and $P(f) = \hat{f}, \forall f \in S(\mathbb{R}).$

- 35. Define tempered distribution. Give the definition of Fourier transform of an $L^{P}(\mathbb{R})$ function as tempered function. Show that $\widehat{1} = \delta$ and $\widehat{\delta} = 1$.
- 36. Show that f is analytic on T if and only if there exists constant k > 0 and a > 0 such that

$$|\widehat{f}(j)| \le ke^{-a|j|}.$$

Hence show that f is analytic on T if and only if

$$\sum_{j=-\infty}^{\infty} \widehat{f}(j) e^{ijz}$$

converges for |Im(z)| < a for some a > 0.

37. Show that

$$F(z) = \sum_{n=1}^{\infty} 2^{-n} \frac{1}{(z+n)^2 + n^{-1}}$$

is analytic on \mathbb{R} and $F|_{\mathbb{R}} \in L^1 \bigcap L^{\infty}(\mathbb{R})$, however F is not holomorphic in any strip $\{z : |y| < a\}, a > 0$. (Hint: Use Paley-Wiener Theorem)

38. Show that

$$F(z) = e^{-e^{z^2}}$$

is entire. $F|_{\mathbb{R}} \in L^1 \bigcap L^{\infty}(\mathbb{R})$, however f is unbounded on any line $y = constant \neq 0$.

- 39. State the Heisenberg uncertainty principle in Fourier analysis. When does the equality hold?
- 40. Write down the probability of a particle located in the interval (a,b).
- 41. Show that the Fourier transform of a radial function is radial.
- 42. Write the relation between the Fourier transform and Radon transform of a Schwartz class (S) of function. Use this to show R(f) = R(g) implies f = g for any $f, g \in S$ where R denotes the Radon transform.

* * *